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/ ABSTRACT

kA model for the prediction of the elastic response of composite materials

*over wide ranges of concentration is presented. The method is based on the

mathematical analogy between the motion of particles suspended in viscous media

and the elastic deformation of solids. The system is locally described by

linearized forms of the elastic moduli. The validity of these relations is then

extended to all concentrations under the assumption that any new portion of

filler "sees" the existing composite as a non-interacting homogeneous matrix.

The method predicts the behavior of composites with solid spherical inclusions

and foams over wide ranges of concentration. The model, free from adjustable

parameters, shows excellent agreement with existing experimental data. The

extension of the method to other inclusion geometries is straightforward.
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INTRODUCTION

In the search of a mathematical model for the mechanical behavior of hetero-

geneous systems, a complete analogy is found between the basic equations for

elasticity theory and those for the motion of suspended particles in viscous

media. The analogy can be easily proved by writing the equations of motion for

an Incompressible material in terms of displacements:

-P +Gu F, 3 2u,"PI 'lt,jj + F1 "Up ( 1)"

where G is the shear modulus, ut is the displacement, Fj is the body force, p

is the reactive pressure, and p is the density.

For comparison, the Navier-Stokes equations for an incompressible Newtonian

fluid are:

"P,i + rv jj + pFi " (2) -

where n is the viscosity, v the velocity, and F the body force per unit mass.

Equations 1 and 2 have a term by term equivalence, with the exception of the

nonlinear component v3 v1, representing a convective acceleration. Under

creeping flow conditions, acceleration terms become Irrelevant and a complete

analogy can then be established. Given a certain geometry, the theoretical equations

for a viscous flow 'roblem and those for the elastic deformation of a solid are

of the same form:

shear rate : viscosity

shear strain : shear modulus

For a suspension of rigid particles in an incompressible matrix, there is a

simple relationship between relative viscosities and relative shear moduli
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(relative to the unfilled matrix):

G

Thus, if a theory for the viscosity of a filled system or suspension is

available, it can be used to estimate the shear modulus of an elastic system.

A second analogy can be also found in relation to the methods used in the

solution of both problems, as indicated In Figures 1 and 2. In very general

terms, it is found that there is an important group of contributions based on

the establishment of an idealized geometry and packing arrangement (top of

Figures 1 and 2). A second group is based on the determination of bounds, which

avoids (or reduces) the idealization problem by use of energy and variational

techniques (bottom of Figures 1 and 2). Typical limitations of geometric models

and bound methods gave origin to a third group of contributions containing ele-

ments of both techniques (middle of Figures 1 and 2).

With regard to the problem of predicting the elastic performance of con- ".:

posite materials, (Figure 2), most of the models deal with specific idealized

geometries and packing arrangements. These theories provide relations between

any two independent elastic constants among a shear modulus (G), a bulk modulus

(K) and a Young's modulus (E:

K - K(Gmp Kin. G1, K-, C)

G - G(G, Km, G1, Ki, c)

where subindices m and i refer to the matrix and the Inclusion, and c is the

volume fraction of the inclusion. Smith [11 noted that through algebraic

.-
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manipulation, most of these theories can be displayed in the form of a genera- -. -

lized "rule of mixtures":

•.8-G G + (G1  Gm)o (1 # )Gm + G

where * takes different functional forms. According to the most familiar

contributions,

(8 - lOv m)Gm + (7 - 5Vm)GM
*= c

(8 - lOVM)G + (7 - 5vm)Gm

(approximate Van der Poel) [11,16]
(8 - IOm)G 4 (7 - 5vm)G

(8 - lOvm)Gi + (7 - 5vm)Gm

(Kerner)[17]

(8 - 1O)G + (7 - Sv)G .

(8 - l0v)Gt + (I - 5v)G

(Budi ansky ) 118)

where G and v are the shear modulus and Poisson's ratio of the composite.

All of the previous models developed by elastic analysis, I.e., deformation

of the matrix and Inclusion, have a common feature: a specific Idealized

geometry and packing arrangement has to be assumed. In many composite

materials, this regularity In geometry does not exist, and the material cannot

be identified with any particular arrangement or ensemble valid throughout the _

whole structure. Thus, the previous treatments, in the strictest sense, do not

truly represent a real composite. One way to avoid this idealization problem is

- . . a . .. ... %**.*-.. a *--- .- . .. . . ..................... .. .,..........-......,....,; -',
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through the use of variational techniques, which do not need to use a precise

geometric model.

The most elementary type of bounds can be calculated through the formalism

of the complementary energy and strain energy theorems (Voigt [12), Paul [13)).

However, the resulting bounds are often too far apart to be useful.

In order to improve these bounds, Hashin and Shtrikman [14) formulated new

variational theorems on the basis of polarization tensors. However, limita-

tions in the applicability of bounds still persist. In general, it is not known

if the calculated bounds are indeed the most restrictive, and the problem

becomes a trade-off between the amount of information introduced in the

formulation, and the resulting contiguity of the bounds.

As a rule, it may be said that the usefulness of bounds Is restricted to

systems where the properties of the phases are similar, i.e., metal alloys. In

polymer reinforcement, however, the differences between matrix and inclusion may

be considerable. As a consequence, the upper and lower bounds tend to separate,

making this technique inadequate for any predictive purpose.

PROCEDURE a i c e tn M

As indicated earlier, a basic problem In the theory of viscosity of suspen-

sions is the determination of correlations useful at high concentrations. Most

of the contributions are based on extensions of Einstein's law of viscosity at

infinite dilution.

The analogous problem of correlating the elastic properties of heterogeneous

system over wide ranges of concentration has not been successfully solved. As

4'
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will be discussed later, predictions according to different theories show a con-

siderable lack of agreement.

The proposed model is based on a differential scheme similar to that used

by Brinkman [3) and Roscoe [2) for the prediction of the viscosity of suspen-

sions at high concentrations. In a later publication, Roscoe [9] tried to

extend the method to the prediction of elastic properties of composites.

McLaughlin [30) presented a similar differential scheme and evaluated its esti--"

mates in relation to the Hashin-Shtrikman bounds.

The present model is based on the calculation by elastic analysis of any

two independent parameters for the composite, namely the shear modulus, the bulk

modulus, or the Young's modulus. Calculations may proceed as follows [29): .

1) describe the deformation state (simple shear, etc.)

2) choose adequate coordinates for a given geometry,

3) state the deformation equations for matrix and inclusion,

4) state continuity of stress at the interface,

5) reduce volume integrals to surface integrals by Eshelby's

formula (5],

6) integrate.

For spherical inclusions and dilute conditions, the shear modulus results as:

15(1-v,) [1 - (Gi/m)] -+-)'
--- -- c - +fc (3) •
G7- 5v m + 2(4 -Svm)GI/G

m; ".'i"-

mS
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and the bulk modulus is:

K (t/Kn) (Kt-Kin);"-K. 1 + c + 1 +gc (4)

Km  1 + (K1 - Kn)/(Kn + (4/3)G.]

where c notes the volume fraction, and the subindices m and i refer to the

matrix and the inclusion.

For an infinitely rigid inclusion (G1  *) in an incompressible matrix

(Vm  0.5), equation (3) results in a relation similar to Einstein's law of

viscosity:

p__ 1G 1+ 2.5 c (5)
~ni G

Consider a suspension containing a small concentration (volume) c1 of spheres

into which is placed a small concentration c2 of spheres, and into this again

a small concentration c3 of spheres, and so on, up to n sets of spheres, and let

the total concentration be c. Then on adding another set of spheres of

concentration (volume fraction) cn+1, the new total concentration (volume

fraction) is:

c(l-cn+ 1) +cn+I (6

So the increase in concentration is:

Ac 3cfinal -cinitial cn+1(l c)(7

If the original suspension is considered a homogeneous medium (matrix) around

the new spheres which are in small concentrations, it is possible to express

-. ....-...-. :.:.:~.. ~
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the increment in shear modulus according to equation (3) as:

Gnn

a Defining

AG n+1 nG

and replacing cn+j according to equation ()

aGfc ufA

G n1 1-c
For infinitely small increments in concentration,

ac dc

aG .dG

and

dG = Gf'

dc (1-C)

This differential expression for the increment in concentration can now be

*used in equation (3). After following a similar reasoning for the bulk modulus

* K, equations (3) and (4) become:

dG G 15(1-v)EJ-G /G]
(10

dc [7-5v + 2(4-5v)G /GJ(1-c) (0

dK (K, -K)

dc (1I [(Ki..K)/(K+(4,3)G)J) (1-c) (1

7S.
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(3K -2G) ":1,:
where v (- is the Poisson's ratio.

2(3K + G)

Equations (10) and (11) constitute a coupled system to be numerically

integrated with the following boundary conditions:

c - 0 G = Gm (matrix properties)
K~ Km

(12)

c" 1 G = Gi (inclusion properties)

K =K 1

RESULTS

1) Solid Inclusions

Smith [11] compared the behavior of well known models for the prediction of

the mechanical response of composites, i.e., Van der Poel [16), Kerner [17),

Budiansky [18], etc. In order to test the performance of the present model, the

same parameter values were used in the simulation. Data in Figure 3a have been

calculated with a shear modulus ratio Gi /GM  30 and Poisson's ratios vi a 0.25

and vm 0.40, representing the case of glass spheres embedded in an epoxym

matrix.

Figure 3b has been calculated with G/Gm = 70,000, vi -0.25, m -0.5,

representing the expected shear properties of glass spheres imbedded in a

lightly vulcanized matrix of natural rubber. ".-",

__...-. . . .. . . .. _:.:.: ~~~~~~~~~~''~~t~~. .S.
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In both cases, a considerable discrepancy among the different models is

observed. The inconveniency of bounds calculated according to Hashin and

Shtrikman [14] is also stressed. The predictions of the present simulation are close -

to those of Van der Poe] [16].

Richard (7) presented experimental data for elastic modulus and Poisson's

ratio of a polyester matrix reinforced with glass spheres (Gm U 5.94 108 Pa,

vm a 0.45, Gi - 2.90 1010 Pa, vi - 0.21). This author conpared his experiments

with the predictions of several theories. Figure 4 indicates the excellent pre-

diction of the present model, while theories by Kerner [17) and Hill [20,21]

only perform well at filler concentrations below 20 percent volume.

Richard's data [7] were also used by Smith [11] for comparison with other

theoretical contributions as indicated in Figure 5a for relative moduli, and

Figure 5b for Poisson's ratio. Calculations were performed with G- 5.84

108 Pa, vm *0.44, G1 = 2.90 1010 and vi  0.21.

Smith [23) compared his own experimental findings on epoxy resin-glass

spheres systems with several theoretical predictions. The properties of matrix

and inclusion are Em = 2.68 109 Pa, Vm = 0.394, Ei = 7.6 1010 Pa, vi a 0.23.

Results from those predictions are plotted and compared with the present model

in Figure 6. .

2) Foams

Equations (10) and (11) have been integrated for the case of a foam by

assuming negligible moduli for the inclusion,

G 0Gi  + 0 ----

K 1 0 .-

... * * . . . . ., *". .-*°o'
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The simulation was compared with the experimental results of Gent and Thomas

[24) for a vulcanized rubber foam (Em - 2.59 106 Pa, vm  0.49). Figure 7 shows " :

excellent agreement in the prediction of relative modulus versus relative den-

slty 8,

6 foaa8 = a 1- c (13)
8rubber

where c is, as before, the volume fraction of the inclusion.

The performance of the model in the prediction of foam properties was also

tested with the experimental work of Moore et al. [25) for a variety of foamed

thermoplastics (PVC, polypropylene copolymer, styrene-acrylonitrile copolymer,

etc.). These.authors observed that plots of relative modulus (relative to the

solid matrix) versus relative densities (6) could be correlated with a single

curve In shear, tension and compression according to:

E r2
foam density of foam (6)2-(1 -c) 2  (14)

Esolid density of solid.

Figure 8 compares the predictions of several theories with the empirical

findings of Moore et al. [25] and the results of the present model. Simulations

were performed for a polypropylene copolymer characterized by Em  1.13 GPa-

mmvm"0.4 1. Again, the proposed method shows total agreement with the experimen- ..."-"

tal values.

3) Low modulus Incompressible inclusions (rubbers)

For the limiting case of an incompressible matrix (vm  0.5) with G1 - O,7:::;:

~~~~~~~~.... ... .. ...................... ,.,.....,.........,-,
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equation (10) admits an analytical solution as

G_ (1- c)5/3  (15)

which represents the behavior of rubber modified polymers.

Holliday et al. [31] compared several relevant theories for a case repre-

senting soft spheres in a rigid matrix (Figure 9). The experimental data

correspond to acrylonitrile-butadiene-styrene (ABS) polymers which consist of a

dispersion of soft polybutadiene rubber spheres in a styrene-acrylonitrile (SAN)

copolymer matrix which has a relatively high modulus.

The different theories examined are not in good agreement. The proposed

model was tested with typical values for styrene-acrylonitrile copolymer (SAN) -

(Em -3.1 10- 3 MPa, vm -0.38) [32], and Ei/E m  0 0. Results presented in

Figure 9 indicate good prediction of the experiments.

CONCLUSIONS

Despite many contributions, the problem of predicting the elastic behavior

of composite materials over wide ranges of concentration has not been satisfac-

torily solved.

Different theories based on well defined geometric models present a con-

siderable divergence of results. The use of bound methods has been proven na-

dequate for problems in polymer reinforcement, where solutions become a trade-

off between the contiguity of the bounds and the amount of information

(complexity) introduced In the model. -

I.0.



In the present work, a correct linearized relation for the elastic defor-

mation of matrix and inclusion is assumed at each concentration. This relation,

which is valid locally, can then be extended to all concentrations under the

assumption that any new portion of filler "sees" the existing composite as a

non-i nteracting homogeneous matrix.

The model, presenting no adjustable parameters, accurately represents

available experimental data on solid spherical inclusions and foams. The method

can be readily extended to other geometries for the inclusion.
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FIGURE CAPTIONS

Figure 1 Models for viscosity of suspensions.

Figure 2 Models for prediction of elastic response in composite materials.

Figure 3a Relative shear modulus versus volume fraction of filler for Gi/G m

30, v 0.25, vm a 0.4 (from Smith [11)). Solid curves, model

performance; dashed curves, predictions with different models:

(1), approximate Van der Poel [16]; (2), Kerner or Hashin and

Shtrikman highest lower bound [14); (3), corrected Van der Poel

[16); (4), Budiansky [18).

Figure 3b Relative shear modulus versus volume fraction of filler for G /Gmim
70,000, vi * 0.25, m - 0.5 from Smith Ill]. Solid curve, model

performance; dashed curves, predictions with different models.

(1), approximate Van der Poel C16]; (2), Kashin and Shtrlkman

highest lower bound [14); (3), corrected Van der Poel [16);

(4), Budiansky [18].

Figure 4 Elastic modulus versus volume fraction of filler for the case of

glass beads in a polyester matrix. Experimental data from Richard [19].

Solid curve, model performance; dashed curves, predictions according

to 1), isostrain; 2), isostress; 3), Kerner [17]; 4), Hill [20,21).

Figure 5 Relative Young's modulus E/E (5a) and Poisson's ratio (5b) versus

m
volume fraction of filler for the case of glass beads in a polyester

matrix. Experimental data from Richard [19). Solid lines, model

performance; dashed lines, predictions with different models.

1), Hashin and Shtrikman highest lower bound [14); 2), Hashin and

Shtrikman least upper bound [14); 3), Van der Poel [16]; 4),

Budiansky [18).

4 . .. .
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Figure 6 Relative Youngis modulus E/E. versus volume fraction of filler for

the case of glass spheres in an epoxi matrix. Experimental data by

Smith [23]. Solid curve, model performance; dashed curves, predic-

tions with models by 1), Hashin and shtrikman highest lower bound [14];

2), Hashin and Shtrikman least upper bound [14]; 3), Van der Poel

[16]; 4), Budiansky [18].

Figure 7 Young's modulus of a highly vulcanized rubber foam Ef relative to the

solid rubber Em versus volume fraction of rubber in the foam. Solid

line, model performance. Experimental points were determined by Gent

et al. [24]. --

Figure 8 Relative moduli of foams versus relative densities. Calculations

here have been performed for the thermoplastics described by Moore et

al.. [25. Solid curves, model performance for 1), Young's modulus;

2), shear modulus. Dashed curves, predictions according to different

models. 3), Kerner [17]; 4), square-in-square model [27]; 5), cube-

in-cube model [27); 6), law of mixtures. Moore et al. [25] correlated

experimental moduli with a square law which results coincident with

curve 1 (model prediction).

Figure 9 Relative modulus of acrylonitrile-butadiene-styrene (ABS) copolymer

versus volume fraction of polybutadiene. Experimental data by

Holliday et al. [31]. Solid curve, model performance. Dashed curves,

predictions with different models. 1), Van der Poel [16]; 2) Parallel;

3), Kerner [17]; 4), Reiner-Hashin [33); 5), Series.
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